
Inequality with areas of bisectorial triangles.

https://www.linkedin.com/feed/update/urn:li:activity:6749388990337609728

Let ABC be a triangle with side-lengths a,b, c inscribed in a circle with radius R and

let I be it’s incenter. Let Fa,Fb and Fc be the areas of the triangles BCI,CAI and ABI,

respectively.

Prove that 1
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 16
R4

.

Solution by Arkady Alt, San Jose, California, USA.

Let r be inradius of ABC.Since Fa  ra
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then 1
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and, therefore, 1
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.

Since a2  b2  c2  9R2 and by Cauchy Inequality 1
a2

 9
a2  b2  c2

then R2 1
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 9R2

a2  b2  c2
 1. Also we have 4r
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R2
 1 due Euler’s Inequality

R  2r.


